

Search for Muonium to Antimuonium Conversion

Jian Tang (Sun Yat-Sen University, China)

tangjian5@mail.sysu.edu.cn

Oct. 2, 2020

The RP frontier townhall meeting & cLFV (RF5) of Snowmass In collaboration with

IHEP: Yukai Chen, Rui-Rui Fan, Zhilong Hou, Han-Tao Jin, Hai-Bo Li, Yang Li, Ying-Peng Song,

Jing-Yu Tang, Nikolaos Vassilopoulos, Tian-Yu Xing, Ye Yuan, Yao Zhang, Guang Zhao, Luping Zhou ...

SYSU: Yu Chen, Jing-Kun Chen, Yu-Zhe Mao, Zi-Xin Wang ...

Osaka U: Chen Wu

Muonium to Antimuonium Conversion Experiment(MACE)

Table of contents

- Physics motivation
- Progress of the first accelerator muon source in China
- Search for muonium → antimuonium at EMuS
- Summary

Table of contents

- Physics motivation
- Progress of the first accelerator muon source in China
- Search for muonium → antimuonium at EMuS
- Summary

Three frontiers in Particle Physics

- High-energy frontier
- High-intensity frontier
- Cosmic Frontier

Search for new physics beyond SM:

- What's the origin of mass?
- Matter-antimatter asymmetry?
- What is DM?
- •

High-intensity/high-precision frontier

- Neutrino experiments
 - ➤ T2K, NOvA, T2HK, DUNE...
 - ➤JUNO, MOMENT...
- cLFV:
 - ➤Mu2e(FNAL)
 - ➤ COMET(J-PARC)
 - ➤ MEG-II(PSI)

$$\mu^-+A1 \rightarrow e^-+A1$$

$$\mu^+ \rightarrow e^+ + \gamma$$

- LNV:
 - ➤ Mu3e(PSI)

$$\mu^+ \rightarrow e^+e^-e^+$$

- Precision measurements of μ:
 - ► MuLan&FAST at PSI: µ lifetime.
 - >MuCap at PSI: couplings for μ captures.
 - >MuSun to measure electroweak interactions and polarizations.
 - TWIST at TRIUMF to measure parameters in weak decays.
 - >g-2 at FNAL to measure magnetic moment.
 - ➤ MeuSEUM at J-PARC to measure muonium hyper-fine structure.

High-intensity frontier

- Search for new physics with accelerator muons
 - Mu2e in US
 - COMET in Japan
 - MEG-II/Mu3e in Switzerland

Muonium to Antimuonium Conversion Experiment in CSNS

$$\mu^+e^- \rightarrow \mu^-e^+$$

MACE

Naively proposed at the international Review of EMuS in November, 2018.

Muonium to antimuonium beyond SM.

- Lepton flavour violation process beyond SM.
- For example, predicted by type-II seesaw model.

Figure 2.5: Majorana-Box (c)

Figure 2.6: Majorana-Box (d)

• EFT study of muonium to antimuonium conversion by R. Conlin and A. Petrov, arXiv: 2005.10276

2020/10/02 Jian Tang

Muon and muonium productions

relative μ^{+} yield $\approx \pi^{+}$ stop density $\cdot \mu^{+}$ Range \cdot length $\approx n \cdot \sigma_{\pi^{+}} \cdot SP_{\pi^{+}} \cdot \frac{1}{SP_{\mu^{+}}} \cdot \frac{\rho_{C}(6/12)_{C}}{\rho_{x}(Z/A)_{x}}$ $\approx \frac{1}{Z^{2/3}}$

Previous experience

- Hot tungsten in 1986:
 4% from 4 MeV μ⁺
- SiO₂ powder in 1990:
 1%-2% from 4 MeV μ⁺
- SiO₂ film(cold) in 2012:
 40% from 5 keV μ⁺

Proposed target: aerogel, super fluid helium...

Jian Tang

How to detect such a process in 1999?

- Follow the apparatus at PSI built more than 20 years ago.
- Continous muon source: $8 \times 10^6 \,\mu^+/s$, p=26 MeV with 5% spread.

2020/10/02

- Magnetic spectrometer to study the anti-muonium
- Signal one: energetic e⁻ from U decay
- Signal two: atomic shell e⁺, accelerated and guided onto a MCP
- Coincident signals: time and position.

$\mathcal{P}(M \to \bar{M})$	$G_{M\bar{M}}/G_F$	Experiment
$< 2.1 \times 10^{-6}$	< 0.29	Huber et al. (1990)
$< 6.5 \times 10^{-7}$	< 0.16	Matthias et al. (1991)
$< 8.0 \times 10^{-9}$	$< 1.8 \times 10^{-2}$	Abela et al. (1996)
$< 8.3 \times 10^{-11}$	$< 3 \times 10^{-3}$	Willmann et al. (1999)

No progress since then!!!

Jian Tang

Table of contents

- High-intensity frontier with accelerator muons
- Progress of the first accelerator muons source in China
- Search for muonium → antimuonium at EMuS
- Summary

EMuS at China Spallation Neutron Source

• Build the first accelerator muon source for µSR in China?

Guangdong-Hongkong-Macao in China The Great Bay Area with several facilities

2020/10/02 Jian Tang

Overview of EMuS

• Build the first accelerator muon source in China?

2020/10/02 Jian Tang ¹

Overview of EMuS

- Conceptual design of EMuS is almost done. Part of proposal in CSNS-II upgrade plan.
- Superconductor solenoid might help to reach intensity 10⁹/s: ~100 of PSI in 1999.

Muonium conversion can be also conducted with an even higher muon intensity at ADS&HIAF in the close-by accelerator center.

Ref: slides@EMuS workshop2019

EMuS in a comparison with international muon sources

	Proton	Surface muons			Decay muons		
	driver [MW]	Intensity [1E6/s]	Polarization [%]	Spread [%]	energy [MeV/c]	Intensity [1E6/s]	Spread [%]
PSI	1.3	420	90	10	85-125	240	3
ISIS	0.16	1.5	95	<15	20-120	0.4	10
RIKEN/RAL	0.16	0.8	95	<15	65-120	1	10
JPARC	1	100	95	15	33-250	10	15
TRIUMF	0.075	1.4	90	7	20-100	0.0014	10
EMuS	0.005	83	50	10	50-450	16	10
Baby EMuS	0.005	1.2	95	10			

×5 CSNS-II upgrade

- Better extraction efficiency with SC solenoid.
- Better muon sources with higher energy.
- Plan to optimize the beamline for better polarization and higher intensity

Ref: JY Tang slides @2019EMuS&MOMENT workshop in SYSU

2020/10/02 Jian Tang

Table of contents

- High-intensity frontier with accelerator muons
- Progress of the first accelerator muons source in China
- Search for muonium → antimuonium at EMuS
- Summary

Fundamental science with EMuS

- The latest bound was done at PSI more than 20 years ago with a muon intensity $8\times 10^6 \mu^+/s$ and high-precision magnetic spectrometer.
- Timing resolution in detector: ~ ns
- Position resolution in detector: ~ mm
- EMuS plan to offer 10⁹ μ⁺/s
- Current timing resolution in detector: ~ ps
- Current position resolution in detector:~µs
- Expect to be improved by > O(10²)?

- No progress since 1999.
- Step further with better timing/tracking capability in a magnetic spectrometer?

6 1

Recent progress in the R&D

Preliminary study:

- CDR of EMuS at CSNS was reviewed by international experts in November, 2018.
- R&D of muonium productions was first tested at PSI.
- Simulation tool for muon beamlines is almost finished.
- Cooperation with PSI, ISIS in RAL, RIKEN and Osaka U.

Platform support:

CSNS-II will provide the high-intensity proton driver.

Team support:

- IHEP has a team of experts in R&D of the accelerator and detector.
- Accelerator physicists: Jing-Yu Tang, Han-Tao Jing, Yu Bao...
- Detector and physics: Rui-Rui Fan, Hai-Bo Li, Ye Yuan, Yao Zhang...
- Sun Yat-Sen University team: Yu Chen(electronics), Yu-Zhe Mao (MC by G4), Jian Tang(physics and detector).
- > Welcome all to joining the project to achieve the best sensitivity in the world.

Funding support:

- CAS fundamental science program for IHEP: muon beam design and optimization
- NSFC funding for SYSU to support physics performance study & detector specifications.
- R&D of the new magnetic spectrometer is missing...

2020/10/02 Jian Tang

Roadmap and milestones

*Expect to get support from the local province.

2020/10/02 Jian Tang ¹⁸

Preliminary MC simulation

- Backgrounds:
 - μ⁺ decays to e⁺, Bhabha scattering to generate high-energy e⁻ in coincident with low-energy e⁺
 - \rightarrow µ+ decays: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu} e^+ e^-$

19

- Antimuonium decay signal by position-time coincidence
 - ➤ High energy Michael electron ~ O(10) MeV -- TPC
 - ➤ Low energy orbital positron ~ O(10) eV -- BGO

2020/10/02 Jian Tang

Muonium generators in MC simulation

- Injected muons: 1.2×10⁵ of μ⁺
- In our simulation, 76% detection efficiency.
- Consistent with PSI muonium formation results.

Happen at the same vertex:

$$|\Delta R| \sim R_{dca} < 12.0 \text{ mm}$$

Happen at the same time:

$$|\Delta t|$$
~TOF-TOF_{expected} < 4.5 ns:
TOF = t0 + t(z)

20

Courtesy: Yu-Zhe Mao

Rare decays in MC simulation

Preliminary results in simulation

- 1.056×10^8 of μ^+
- BR of $\mu^+ \rightarrow e^+ e^- e^+ \nu_e \overline{\nu_{\mu}}$ is set to 100%.

Compared with PSI estimates

- 9.459×10^7 of μ^+ Rare decay
- 1.7 background events expected.

Happen at the same vertex:

$$|\Delta R| \sim R_{dca} < 12.0 \text{ mm}$$

Happen at the same time:

$$|\Delta t|$$
~TOF-TOF_{expected} < 4.5 ns:
TOF = t0 + t(z)

Courtesy: Yu-Zhe Mao

MC simulation to support MACE

Detector R&D

• Overlap with other projects developed by CSNS team.

TPC prototype

Positron detector by CsI

Electrostatic mirror

Courtesy: Rui-Rui Fan

Table of contents

- High-intensity frontier with accelerator muons
- Progress of the first accelerator muons source in China
- Search for muonium → antimuonium at EMuS
- Summary

Summary

- Hot topics to do precision measurements of QED and search for new physics with accelerator muon sources.
- We naively proposed an experiment to search for muonium to antimuonium conversions: aim at the best sensitivity in the world, a potential breakthrough in the intensity frontier.
- MACE will boost the innovative design in muon beamlines, muonium productions, high time and spatial resolution detectors. **Aim at two orders of magnitude** better than the latest limit.
- Welcome all to pushing forward the Muonium to Antimuonium Conversion Experiment.

2020/10/02 Jian Tang ²

PostDoc advertisement in SYSU

- Postdoc openings in our group for muon physics: ~2K euros/month after tax
 + bonus + on-campus housing + Postdoc funding supported by local province.
- Please contact me by email: tangjian5@mail.sysu.edu.cn

2020/10/02 Jian Tang ²⁶

